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At the bulk liquid-gas coexistence the liquid film adsorbed on the corrugated substrate can exhibit a first-
order thin-thick transition, provided the corrugation amplitude exceeds the critical value, specific for this kind
of corrugation. We study the coexistence of thin and thick layer adsorbed on the sinusoidally corrugated
substrate. We evaluate the line tension between these films in the vicinity of the filling critical temperatureTCF.
The lineL tension is positive and vanishes at the filling critical point according to the power lawL,sTCF

−Td3/2.
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I. INTRODUCTION

The adsorption of a fluid on a solid substrate can be in-
fluenced by the corrugation of a solid in two different ways.
The wetting temperature can be decreased by the roughness;
at the mean-field level it happens only when the wetting is a
first-order transition. The second effect is more interesting;
independently of the order of the wetting transition an addi-
tional thin-thick first-order transition can arise provided the
amplitude of the corrugation exceeds a specific, critical
value. This transition, called bendingf1g or filling f2g transi-
tion, can depend not only on the roughness amplitude, but
also on other geometrical properties of the substrate such as,
for example, its local curvature.

In this paper we discuss the coexistence between thin and
thick layer adsorbed on the sinusoidally corrugated substrate
for the short-range interactions exhibiting the continuous
wetting transition. We employ the mean-field approximation
of the effective Hamiltonian theory. In this case the free en-
ergy of the system contains not only the bulk and surface
contribution, but additionally the line contribution. We dis-
cuss the system close to the filling critical point, and we
assume that the contact line is straight and perpendicular to
the periodic structure of the substrate. Within the mean-field
approximation critical quantities of the system are indepen-
dent of its dimension. One expects that the singularity of the
line tension obeys the same power law in the vicinity of the
filling critical temperatureTCF like the surface tension in the
vicinity of the wetting temperatureTW, i.e., vanishes with the
critical exponent12. Indeed, we have found that the line ten-
sion is proportional tosTCF−Td3/2 when temperature grows
to the filling critical temperatureTCF. Thus, the mean-field
value of the critical exponental connected to the singularity
of the line tension is equal1

2. In Sec. II we recall the analysis
described inf1,2g. In Sec. III we evaluate the mean-field
value of the line tension at the temperature close to the criti-
cal filling temperatureTCF. Section IV contains the discus-
sion of results.

II. THE ADSORPTION ON THE SINUSOIDALLY
CORRUGATED SUBSTRATE

We discuss two-dimensional, corrugated substrate, de-
scribed by the function

bsx,yd = As1 − cosqxd. s2.1d

The half spacez.bsx,yd is occupied by the fluid at the bulk
liquid-gas coexistence, and infinitely far from the substrate
the gas phase is stable. Due to the interactions of the fluid
with the substrate, the adsorbed layer of the liquid appears on
the wall. In this section we asume that the liquid-gas inter-
face is sas the substrated invariant in y direction. This as-
sumption makes the problem one-dimensional; for this rea-
son we denote the shape of the substrate simply bybsxd. We
denote the film thickness bylsxd and the position of the
interface by fsxd, where fsxd=bsxd+ lsxd. The interface has
the same symmetry as the substrate. For this reason we can
restrict our analysis to the one segment of the substrate. Thus
the system is described by the Hamiltonian

Hffg =E
−a

a

dxFs

2
fx
2 + vsldG, a =

p

q
, s2.2d

supplemented by the boundary conditions

fxs0d = fxsad = 0, s2.3d

determined by the symmetry of the interface. Hamiltonian
s2.2d is the appropriate one only whenqA!1. In Eq.s2.2d s
denotes the surface tension of the free liquid-gas interface
andvsld is the effective interaction potential of the substrate.
We discuss the potential of the form

vsld = tWexps− pbld + U exps− 2pbld. s2.4d

t=sT−TWd /TWø0, whereTW is the wetting temperature of
the planar substrate. The amplitudesW and U are positive;
pb is the inverse correlation length in the free liquid phase.
The mean-field approach consists of the minimization of the
Hamiltonians2.2d. In this way we obtain the Euler-Lagrange

equation for the equilibrium position of the interfacef̄sxd

s f̄ xxsxd = v8„l̄sxd…. s2.5d

The Hamiltonians2.2d evaluated for this equilibrium position
of the interface gives the mean-field free energy of the sys-
tem.

Instead of solving Eq.s2.5d we can adopt an alternative
proceduref1,2g. We approximate the film thickness up to its
first harmonic
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lsxd = l0 + B cosqx. s2.6d

Next, we substitute Eq.s2.6d into Hamiltonian s2.2d. This
substitution reduces the Hamiltonian to the function of two
variables,

Hspbl0,pbBd =
psq

2pb
2 spbB − pbAd2 +

2p

q
ftWe−pbl0FspbBd

+ Ue−2pbl0Fs2pbBdg, s2.7d

where the functionF is defined by the integral

FspbBd =
1

p
E

0

p

dt e−pbB cos t. s2.8d

Minimization of the Hamiltonian with respect tol0 gives

l0 = lp + pb
−1 lnFFs2pbBd

FspbBd G . s2.9d

lp=−lns−tW/2Ud is the equilibrium film thickness on the
planar substrate. Next we substitutel0spbBd into Eq. s2.7d
and we obtain the Hamiltonian of the form

YspbBd = H„l0spbBd,pbB…

=
psq

pb
2 F1

2
spbB − pbAd2 −

1

sqjipd2

F2spbBd
Fs2pbBdG .

s2.10d

jip denotes the mean-field parallel correlation length on the
planar substrate; this length is divergent at the wetting point.
Minimization of the Hamiltonians2.10d gives the equilib-

rium valueB̄ of the undulation amplitude of the film thick-
ness. It satisfies equation

pbA = pbB̄ +
2

sqjipd2

FspbB̄d

Fs2pbB̄d
F FspbB̄d

Fs2pbB̄d
F8s2pbB̄d

− F8spbB̄dG , s2.11d

where F8 denotes the derivative ofF with respect to its
argument. Depending on the temperature and corrugation
amplitude of the substrate Eq.s2.11d can have more than one
solution. When there are three solutions of Eq.s2.11d, the
thin-thick coexistence can occur. Two of them are connected
to the minima of Hamiltonians2.10d; we will denote them by

B̄1 and B̄3. The third solutionB̄2 sB̄1, B̄2, B̄3d corresponds
to the maximum of Hamiltonian. The mean-field free energy
is then given by the expression

FsT,q,Ad =
psq

sqjipd2pb
2

F2spbB̄d

Fs2pbB̄d
F 2

sqjipd2LspbB̄d − 1G ,

s2.12d

where

LspbB̄d =
1

Fs2pbB̄d
F FspbB̄d

Fs2pbB̄d
F8s2pbB̄d − F8spbB̄dG2

.

s2.13d

At specific temperatureTFsAd the free energys2.12d evalu-

ated forB̄=B̄1 has the same value as the free energy evalu-

ated forB̄=B̄3. It is the filling transition temperature for the
corrugation amplitudeA. The line of such points is called the
filling transition sor thin-thickd line. It terminates at the fill-
ing critical point defined bypbACF=2.469, andsqjipdCF

=0.492.
When the temperature is less than the wetting temperature

of the planar substrateTW, the free energy of the system is
negative due to the factorsqjipd−2 into the square brackets,
and continuously grows to 0sit is the value of the free energy
of the completely wet systemd when temperature grows to
TW due to the factorsqjipd−2 in front of the right-hand side
sRHSd in Eq. s2.12d. Thus the corrugated system displays the
critical wetting atTW.

III. THE COEXISTENCE OF TWO ADSORBED LAYERS

Now we take into consideration the thermodynamical
conditions fixed at the thin-thick coexistence lineTFsAd close
to the critical filling point. We discuss the adsorbed liquid
layer thin aty=−` and thick aty=` with the contact line
situated aty=0. The film thickness is represented by the
function

lsx,yd = l0syd + Bsydcosqx, s3.1d

with the boundary conditions

l0s− `d = l̄01 = l0sB̄1d, Bs− `d = B̄1,

l0s`d = l̄03 = l0sB̄3d, Bs`d = B̄3, s3.2d

where l̄01, B̄1, l̄03, and B̄3 denote the mean distance and the
corrugation amplitude of the equilibrium thin or thick layer,

respectivelysB̄1, B̄3d. The mean-field free energy of the thin
and thick layer at the coexistence satisfy equations

F1 = Hspbl̄01,pbB̄1d, F3 = Hspbl̄03,pbB̄3d, F1 = F3.

s3.3d

Substituting lsx,yd defined by Eq. s3.1d into the two-
dimensional Hamiltonian analoguous to Hamiltonians2.2d

Hffg =E
−a

a

dxE
−`

`

dyFs

2
s¹ fd2 + vsldG , s3.4d

and subtracting the surface contribuion, after a simple calcu-
lation we get the excess of the free energy connected to the
thin-thick coexistence line. It is called the line tension
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L =E
−`

`

dyFps

2q
SdBsyd

dy
D2

+
ps

q
Sdl0syd

dy
D2

+ H„pbl0syd,pbBsyd… − F1G . s3.5d

Minimizing the line tension we obtain Euler-Lagrange equa-
tions

ps

q

d2B

dy2 =
]H
]B

,
2ps

q

d2l0
dy2 =

]H
]l0

. s3.6d

Integrating these equations we obtain

ps

q
FSdl0syd

dy
D2

+
1

2
SdBsyd

dy
D2G = H„pbl0syd,pbBsyd… − F1.

s3.7d

The line tension can be rewritten as

L = 2E
−`

`

dyfH„l0syd,Bsyd… − F1g

=
2ps

q
E

−`

`

dyFSdl0syd
dy

D2

+
1

2
SdBsyd

dy
D2G . s3.8d

It follows from Eq. s3.8d that the line tension is positive
below the filling critical temperature. Close to the critical

filling point pbsB̄3−B̄1d andpbsl̄03− l̄01d are small and in con-

sequence we can linearize Eqs.s3.6d around l̄01,B̄1 for y

,0 and l̄03,B̄3 for y.0:

l0syd = l̄0k + dl0ksyd, Bsyd = B̄k + dBksyd, k = 1,3.

s3.9d

In this approximation Euler-Lagrange equations take the
form

ps

q

d2

dy2SdBk

dl0k
D = S HBBskd HBl0

skd
1
2HBl0

skd 1
2Hl0l0

skd DSdBk

dl0k
D

= AskdSdBk

dl0k
D , s3.10d

where the matrixAskd is evaluated at thin or thick equilib-
rium layer, respectively. The solution of these equations has
the following form:

Bsyd =HB̄1 + a1 expsg1yd + b1 expsh1yd for y ø 0,

B̄3 + a3 exps− g3yd + b3 exps− h3yd for y ù 0
J

s3.11d

and

l0syd =H l̄01 + c1 expsg1yd + d1 expsh1yd for y ø 0,

l̄03 + c3 exps− g3yd + d3 exps− h3yd for y ù 0,
J

s3.12d

wheregk andhk sk=1,3d are defined through eigenvaluess1k

ands2k of the matrixAskd

gk =Îqs1k

ps
, hk =Îqs2k

ps
, s3.13d

s1k =
1

2

HBBskdHl0l0
skd − HBl0

2 skd

HBBskd +
1

2
Hl0l0

skd
=

detfAskdg
TrfAskdg

, s3.14d

s2k = HBBskd +
1

2
Hl0l0

skd − s1k = TrfAskdg − s1k.

s3.15d

The determinant ofAskd is related to the Hamiltonians2.10d
through the equation

detfAskdg = pb
2sqjipd−2CspbB̄kdS1 −

C9spbB̄kd
sqjipd2 D

= pb
2sqjipd−2CspbB̄kdY9spbB̄kd, s3.16d

where

CspbBd =
F2spbBd
Fs2pbBd

. s3.17d

SinceB̄k is the minimum of Hamiltonians2.10d, detfAskdg is
positive below the filling critical point, and vanishes at this
point. For the same reason TrfAskdg is positive indepen-
dently of the temperature. Thuss1k is positive below the
filling critical point and vanishes at this point, whiles2k re-
mains positive even at the filling critical point. The eigenval-

uess1k, s2k are functions ofB̄k, but close to the filling critical

point one can replace its argumentB̄k by the undulation am-
plitude Bi at the filling critical point. Thus they have phase
independent valuess1 and s2, respectively. For this reason
a3=−a1, b3=−b1 c3=−c1, and d3=−d1. The coefficientsa
=a1, b=b1, c=c1, andd=d1 in Eqs.s3.11d ands3.12d can be
evaluated from the condition of continuity ofl0syd, Bsyd, and
Eq. s3.10d. The line tension is equal to

L =
2ps

qsg + hdF1

2
ghsa + bd2 +

1

2
sga + hbd2 + ghsc + dd2

+ sgc + hdd2G . s3.18d

The coefficientsa, b, c, andd are evaluated in the Appendix.
At the vicinity of the filling critical point the first and third
contributions in square brackets dominate the second and
fourth contributions. Thus the dominant contribution to the
line tension in the vicinity of the filling critical point is equal

L =
psg

4q
s1 + 2l08spbBid2dsB̄3 − B̄1d2. s3.19d

Close to the filling critical pointsB̄3−B̄1d2 and the line ten-
sionL is proportional tosqjipdCF

2 −sqjipd2,TCF−T f2g. This
result is obtained while expanding Hamiltonians2.10d up to
the fourth-order term insB−Bid in the vicinity of the filling
critical point, in the same way as standard Landau theory of
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the bulk critical point, where the Landau Hamiltonian is ex-
panded up to the fourth-order term of the order parameter. As
g,ÎTCF−T sAppendixd, the asymptotic behavior of the line
tension close to the critical filling temperature described by
the power law

L , AsTCF − Td2−al , s3.20d

for TøTCF, gives the mean-field value of the critical expo-
nental =

1
2.

IV. SUMMARY AND CONCLUSIONS

We have obtained the mean-field value of the critical ex-
ponent describing the nonanalyticity of the line tension in the
vicinity of the filling critical point. In accordance with the
standard van der Waals result concerning the surface tension,
al =

1
2.

Close to the filling critical temperature, the fluctuations of
the film thickness become more and more pronounced as the
system approachesTCF. These fluctuations give an additional
contribution to the true value ofal. Here we do not discuss
the influence of the fluctuation over the line tension; we only
show that close to the filling critical point they are so strong
that one cannot neglect them.

We describe the fluctuations in a very simplified way, tak-
ing into consideration a straight contact line, and assuming
global fluctuations ofl0, andB, neglecting local fluctuations
of the film thickness. Close to the filling critical point

ksdBd2l=ksB−B̄kd2l sB̄k meansB̄1 or B̄3, respectivelyd be-

comes greater thansB̄3−B̄1d2 and it is impossible to distin-
guish thin and thick film. We describe here the fluctuations of
the undulation amplitude with the help of the Gaussian ap-
proximation

ksdBd2l =
1

K
E

0

`

dl0E
−l0

l0

dBsdBd2

3expF−
b

2
sdB,dldSHBB HBl0

HBl0
Hl0l0

DSdB

dl0
DG ,

s4.1d

where the second derivative matrix is evaluated atB̄3 andB̄1
for thick and thin film, respectively.K is defined as

K =E
0

`

dl0E
−l0

l0

dBexpF−
b

2
sdB,dldSHBB HBl0

HBl0
Hl0l0

DSdB

dl0
DG .

s4.2d

Because of the specific range of integration it is not easy to
evaluate these integrals. Nevertheless, close to the filling
critical point the leading, divergent term of the undulation
amplitude fluctuations can be estimated as

ksdBd2l , kBT
]

]HBB
lnsdetfH9gd =

kBT

detfH9g
Hl0l0

. s4.3d

Thus, very close toTCF the fluctuationksdBd2l is greater than
sB3−B1d2 sdetfH9g vanishes atTCFd and the mean-field ap-
proximation breaks down.

In the same way we can estimate

ksdl0d2l ,
kBT

detfH9g
HBB s4.4d

and

kdBdl0l , −
kBT

detfH9g
HBl0

. s4.5d

All these quantities are divergent at the filling critical point
but

ksdBd2lksdl0d2l − kdBdl0l2 , kBT s4.6d

remains finite.
A serious problem arises from the analysis described in

Sec. I. The film thicknesslsxd has to be positive everywhere.
However, in certain cases, depending on the amplitudesW,
U of the effective potentialvsld, surface tensions, and the
temperature, this condition can be violated. In this case our
analysis is not valid. In papersf1,2g the positivity oflsxd was
not discussed. The subsequent paper will be devoted to this
problem.
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APPENDIX

In this appendix we evaluate coefficientsa, b, c, and d
present in Eq.s3.18d. They are determined by the system of
the linear equations

sHBB − s1da + HBl0
c = 0,

sHBB − s1db + HBl0
d = 0,

a + b =
1

2
sB̄3 − B̄1d,

c + d =
1

2
sl̄03 − l̄01d =

1

2
l8spbBidsB̄3 − B̄1d. sA1d

All derivatives of the HamiltonianH are evaluated atfBi,
l0spbBidg. As s1 vanishes at the filling critical point, while
HBB does not vanish, we can neglects1 in the above equa-
tions. Solving Eqs.sA1d we obtain

a .
B̄3 − B̄1

2 TrfAgS1

2
Hl0l0

− l8spbBidHBl0D ,

b .
B̄3 − B̄1

2 TrfAg
sHBB + l8spbBidHBl0

d. sA2d

Explicit calculations show
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HBl0
„Bi,l0spbBid… = − l8spbBidHl0l0

„Bi,l0spbBid…. sA3d

With the help of this relation we finally obtain

a .
B̄3 − B̄1

2Hl0l0
TrfAgS1

2
Hl0l0

2 + HBl0
2 D ,

b .
B̄3 − B̄1

Hl0l0
TrfAg

detfAg. sA4d

Asymptotically, close to the filling critical point

a , t1/2, g , t1/2, b , t, a + b , t1/2, sA5d

and finally

ghsa + bd2 , t3/2, sga + hbd2 , t2. sA6d

Analoguously we can obtain the asymptotic behavior ofc
andd.
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