PHYSICAL REVIEW E 71, 011605(2005

Coexistence at critical filling
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At the bulk liquid-gas coexistence the liquid film adsorbed on the corrugated substrate can exhibit a first-
order thin-thick transition, provided the corrugation amplitude exceeds the critical value, specific for this kind
of corrugation. We study the coexistence of thin and thick layer adsorbed on the sinusoidally corrugated
substrate. We evaluate the line tension between these films in the vicinity of the filling critical temp@&gagture

The line £ tension is positive and vanishes at the filling critical point according to the poweLlaWT g
- )3/2.
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. INTRODUCTION b(x,y) = A(1 - cosqX). (2.1)

The adsorption of a fluid on a solid substrate can be inThe half space>b(x,y) is occupied by the fluid at the bulk
fluenced by the corrugation of a solid in two different ways. |iquid-gas coexistence, and infinitely far from the substrate
The wetting temperature can be decreased by the roughnesge gas phase is stable. Due to the interactions of the fluid
at the mean-field level it happens only when the wetting is ayith the substrate, the adsorbed layer of the liquid appears on
first-order transition. The second effect is more interestingthe wall. In this section we asume that the liquid-gas inter-
independently of the order of the wetting transition an addiface is(as the substratdnvariant iny direction. This as-
tional thin-thick first-order transition can arise prOVided thesumption makes the prob|em one_dimensionaJ; for this rea-
amplitude of the corrugation exceeds a specific, criticakon we denote the shape of the substrate simply(ky We
value. This transition, called bendifg] or filling [2] transi-  genote the film thickness bi(x) and the position of the
tion, can depend not only on the roughness amplitude, byhierface byf(x), where f(x)=b(x)+I(x). The interface has

also on other geometrical properties of the substrate such ag,« same symmetry as the substrate. For this reason we can

for example, its local curvature. _restrict our analysis to the one segment of the substrate. Thus
In this paper we discuss the coexistence between thin angl system is described by the Hamiltonian

thick layer adsorbed on the sinusoidally corrugated substrate

for the short-range interactions exhibiting the continuous H[f]:fa dx[gf2+w(l)] a:7—T
wetting transition. We employ the mean-field approximation a 2 ' '
of the effective Hamiltonian theory. In this case the free en-

ergy of the system contains not only the bulk and surfacéupplemented by the boundary conditions
contribution, but additionally the. Iﬁne cqqtributiqn. We dis- £.(0)=f,(a) =0, (2.3
cuss the system close to the filling critical point, and we

assume that the contact line is straight and perpendicular tdetermined by the symmetry of the interface. Hamiltonian
the periodic structure of the substrate. Within the mean-field2.2) is the appropriate one only whef\<1. In EqQ.(2.2) o
approximation critical quantities of the system are independenotes the surface tension of the free liquid-gas interface
dent of its dimension. One expects that the singularity of theindw(l) is the effective interaction potential of the substrate.
line tension obeys the same power law in the vicinity of theWe discuss the potential of the form

filling critical temperatureT ¢ like the surface tension in the _ _ _

vicinity of the wetting temperaturé,,, i.e., vanishes with the () = tWexp(=pyl) + U expl(= 2p4l). 2.4
critical exponem%. Indeed, we have found that the line ten- t=(T-Ty)/Tyw=<0, whereT,y is the wetting temperature of
sion is proportional td Tce—T)%? when temperature grows the planar substrate. The amplitudésand U are positive;

to the filling critical temperaturd . Thus, the mean-field pg is the inverse correlation length in the free liquid phase.
value of the critical exponent; connected to the singularity The mean-field approach consists of the minimization of the
of the line tension is equdl. In Sec. Il we recall the analysis Hamiltonian(2.2). In this way we obtain the Euler-Lagrange
described in[1,2]. In Sec. Il we evaluate the mean-field equation for the equilibrium position of the interfafie)

value of the line tension at the temperature close to the criti- — —

cal filling temperatureTr. Section IV contains the discus- afi(X) = o' (1(x)). (2.9

sion of results.

(2.2

The Hamiltonian(2.2) evaluated for this equilibrium position
Il THE ADSORPTION ON THE SINUSOIDALLY of the interface gives the mean-field free energy of the sys-

CORRUGATED SUBSTRATE tem. _ .
Instead of solving Eq(2.5) we can adopt an alternative

We discuss two-dimensional, corrugated substrate, dgsrocedurd1,2]. We approximate the film thickness up to its
scribed by the function first harmonic
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[(x) =1y + B cosgx. (2.6

Next, we substitute Eq(2.6) into Hamiltonian(2.2). This
substitution reduces the Hamiltonian to the function of two
variables,

o
H(Ppglo,pgB) = —5
(pglo:PgB) 2p2(

2
PsB — PsA)* + {[tWe‘PB'OCD(pBB)
B

+ Ue_2pB|0CD(2pBB)], (2.7
where the functiorb is defined by the integral
1 7 —p;sB cost
®(pgB)=—| dtePs . (2.8
m™Jo

Minimization of the Hamiltonian with respect 1g gives
P (2pgB)

-1
= P In[ ®(pgB) }

| ,==In(-tW/2U) is the equilibrium film thickness on the
planar substrate. Next we substitutg¢p,B) into Eq. (2.7)
and we obtain the Hamiltonian of the form

Y(pgB) =H(lo(psB),psB)

IO: (29)

g 1 ) <I>2(pr)}
=T Z(pB - pA2 - —— .
0 [z(pﬁ P~ (Ge B(2p,B)

(2.10
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2

(g8 ‘D'(ZPﬁE) - q),(pﬁg) .

1

A(pgB) = —
D(2pgB) L P(2pgB)

(2.13

At specific temperatur@g(A) the free energy2.12) evalu-
ated forB=B; has the same value as the free energy evalu-

ated forB=B;. It is the filling transition temperature for the
corrugation amplitud@. The line of such points is called the
filling transition (or thin-thick) line. It terminates at the fill-
ing critical point defined bypsAcg=2.469, and(q¢,)cr
=0.492.

When the temperature is less than the wetting temperature
of the planar substraté,, the free energy of the system is
negative due to the factdgé,) 2 into the square brackets,
and continuously grows to (X is the value of the free energy
of the completely wet systenwhen temperature grows to
Tw due to the factofgé,,)"2 in front of the right-hand side
(RHS) in Eq.(2.12. Thus the corrugated system displays the
critical wetting atTy,.

IIl. THE COEXISTENCE OF TWO ADSORBED LAYERS

Now we take into consideration the thermodynamical
conditions fixed at the thin-thick coexistence liigA) close
to the critical filling point. We discuss the adsorbed liquid
layer thin aty=-o and thick aty=cc with the contact line
situated aty=0. The film thickness is represented by the
function

&~ denotes the mean-field parallel correlation length on the

planar substrate; this length is divergent at the wetting point.

Minimization of the Hamiltonian(2.10 gives the equilib-

rium valueB of the undulation amplitude of the film thick-
ness. It satisfies equation

= 2 opB | opB) ., . —

A—oB 3) "L o' (2p,B

PAA= RS (Q§|w)2<1>(2pBB)[<I>(2pBB) 20
_q),(pﬁg)], (2.11

where @’ denotes the derivative ob with respect to its

[(x,y) =lo(y) + B(y)cosgx, (3.1
with the boundary conditions
lo(= ) =lgy =1g(By), B(=) =By,
lo(¢) = los=10(Bs),  B(x) = Bs, (3.2

Wherel_01, El I_03, andgg denote the mean distance and the
corrugation amplitude of the equilibrium thin or thick layer,

respectively(B; < Bj). The mean-field free energy of the thin

argument. Depending on the temperature and corrugatiofnd thick layer at the coexistence satisfy equations

amplitude of the substrate E@®.11) can have more than one
solution. When there are three solutions of E2.11), the

thin-thick coexistence can occur. Two of them are connected

to the minima of Hamiltoniari2.10); we will denote them by
B, andBs;. The third solutionB, (B, <B,<B5;) corresponds

Fl:H(pﬁl_Olvpﬁgl)v FBZH(pﬁl_O?ﬂpﬁEa)v Fi1=Fs.
(3.3

Substituting I(x,y) defined by Eq.(3.1) into the two-

to the maximum of Hamiltonian. The mean-field free energydimensional Hamiltonian analoguous to Hamilton{&r?)

is then given by the expression

2
(Gj)

Toq ¢2(pﬁg)
(Aéim)°P5 d(2p,B)

F(T.qA) =

|

zA(pﬁE) - 1:| y

(2.12

where

H[f]= ) dxr dy[g(Vf)2+ w(l)}, (3.4)

and subtracting the surface contribuion, after a simple calcu-
lation we get the excess of the free energy connected to the
thin-thick coexistence line. It is called the line tension
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(7| 7o dB(y)>2 E<dlo(y))2
£'Lcdy{Zq< dy ) g\ dy

+H(pglo(y),pgB(Y)) — F1:|- (3.9

1
Minimizing the line tension we obtain Euler-Lagrange equa- Heg(K) + EHIOIO(k)

tions
TodB _dH  2modly M
qdy B q dy? 4o’
Integrating these equations we obtain
W_(TKd|o(y)>2+ 1(d8<y>
q dy 2\ dy

(3.6

2
) ] =H(pglo(y),psB(Y)) — F1.
(3.7

The line tension can be rewritten as

£=2 J dyH(o(y). B(Y)) - Fi]

_2mo (7 (digy) |? 1<dB<y>)2]
S q J_wdy[( dy ) folay )] G
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Y= \lﬂ(, = \/@(, (3.13
o o

1 HesWHiy, (0 =15, (K defAK)]
"%=3 T TAR]

, (3.19

1
S = Haa(K) + S H1(K) = Suc= TILAK) ]~ Sy

(3.19

The determinant ofA(k) is related to the Hamiltonia(2.10
through the equation

_ P o
defAK)] = pé(qaﬁ)*\v(pﬁak)(l - M)

(Qé~ 2
= PA0E1) 2V (PsBY Y (B, (3.16
where
D?(pgB)
_ B
V(pgB) = o) (3.17)

It follows from Eq. (3.8) that the line tension is positive SinceB, is the minimum of Hamiltoniari2.10, def.A(k)] is
below the filling critical temperature. Close to the critical positive below the filling critical point, and vanishes at this
filling point pg(B3—B;) andpg(lgs—lo) are small and in con-  point. For the same reason[J(k)] is positive indepen-

sequence we can linearize Ed8.6) aroundl_m,g1 for y
<0 andlgz, B3 for y>0:

lo(y) = loc+ Sloy),  B(y) =Be+ dBy(y), k=1,3.
(3.9

dently of the temperature. Thus, is positive below the
filling critical point and vanishes at this point, whisg, re-
mains positive even at the filling critical point. The eigenval-
uessyy, sy are functions 0By, but close to the filling critical

point one can replace its argumeBytby the undulation am-
plitude B; at the filling critical point. Thus they have phase

In this approximation Euler-Lagrange equations take thﬁndependent values; ands,, respectively. For this reason

form

o & <5Bk> _( Hep(K)  Hai,(K) ) <5Bk)
q dy’\ Ao/ \3He (K 3H1y,(K) )\ o

az=-a;, bs=—-b; c3=-c,, and d3=-d;. The coefficientsa
=a,, b=by, c=¢4, andd=d, in Egs.(3.11) and(3.12 can be
evaluated from the condition of continuity bfy), B(y), and
Eqg. (3.10. The line tension is equal to

By 2o | 1 1

ok a7+ Y@+ b+ S(ya+ yb)”+ yn(c+d)
where the matrixA(k) is evaluated at thin or thick equilib- )
rium layer, respectively. The solution of these equations has +(ye+ 7d)” | (3.18

the following form:

E1 +a; exply1y) + by exp(7,y) fory<0,

Bly)=1_—
B3+ ag exp(— ysy) + bz exp(— 75y) fory=0
(3.11)
and
lo(y) = |_01 +Cy explyry) +dy explrmyy) fory=0,
0 =\__

log+ Cz exp(= yay) + d3 exp(— nay) fory=0,
(3.12

wherey, and 7, (k=1,3) are defined through eigenvalugg
andsy, of the matrix.A(k)

The coefficients, b, ¢, andd are evaluated in the Appendix.

At the vicinity of the filling critical point the first and third
contributions in square brackets dominate the second and
fourth contributions. Thus the dominant contribution to the
line tension in the vicinity of the filling critical point is equal

£= %/(1 +2)(pgB)Y) (B3~ B (3.19

Close to the filling critical poin{B;—B,)? and the line ten-
sion £ is proportional ta(qé; )3~ (&2~ Tce—T [2]. This
result is obtained while expanding Hamiltoniéh10 up to

the fourth-order term ifB-B;) in the vicinity of the filling
critical point, in the same way as standard Landau theory of
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the bulk critical point, where the Landau Hamiltonian is ex-  In the same way we can estimate
panded up to the fourth-order term of the order parameter. As

v~\Tce—T (Appendiy, the asymptotic behavior of the line ((819)?) ~ keT Hep (4.4)
tension close to the critical filling temperature described by de{#"]
the power law
and
L~ATee-T)%™™, (3.20 T
B
for T<Tcg, gives the mean-field value of the critical expo- (8Bdlg) ~ - de{H”]HB'O' (4.9
nente;==.
2 All these quantities are divergent at the filling critical point
IV. SUMMARY AND CONCLUSIONS but
We have obtained the mean-field value of the critical ex- ((8B)2){(81)?) = (5Bl g)2 ~ keT (4.6)

ponent describing the nonanalyticity of the line tension in the
vicinity of the filling critical point. In accordance with the remains finite.
standard van der Waals result concerning the surface tension, A serious problem arises from the analysis described in
04:%- Sec. I. The film thicknesKx) has to be positive everywhere.
Close to the filling critical temperature, the fluctuations of However, in certain cases, depending on the amplitWles
the film thickness become more and more pronounced as tHé of the effective potential(l), surface tensiow, and the
system approaché&g:r. These fluctuations give an additional temperature, this condition can be violated. In this case our
contribution to the true value of;. Here we do not discuss analysis is not valid. In papef4,2] the positivity ofl(x) was
the influence of the fluctuation over the line tension; we onlynot discussed. The subsequent paper will be devoted to this
show that close to the filling critical point they are so strongproblem.
that one cannot neglect them.
We describe the fluctuations in a very simplified way, tak-
ing into consideration a straight contact line, and assuming
global fluctuations of,, andB, neglecting local fluctuations We acknowledge helpful discussions with M.
of the film thickness. Close to the filling critical point Napiorkowski and the support of the KBN under Grant No.
((6B)®»=((B-B? (B, meansB, or B;, respectively be- 2P03B00823.

comes greater thafgg,—gl)z and it is impossible to distin-
guish thin and thick film. We describe here the fluctuations of APPENDIX

the undulation amplitude with the help of the Gaussian ap- ) ) o
proximation In this appendix we evaluate coefficierasb, ¢, andd

present in Eq(3.18. They are determined by the system of

((8B)?) = lfcdl flo dB(sB)? the linear equations
= 0
®Jo o (Heg—spa+Hg =0,

xexp| - o, e (5'3)
P 2 Hai, Higy/ \dlo ' (Heg—sPb+Hg d=0,

(4.9
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L o - = a+b==(B3—-By),
where the second derivative matrix is evaluateBpand B, 2( 3~ By

for thick and thin film, respectivel\K is defined as

K=fd|of° dBexp[_é'(gB 51)(”58 HB‘o)(éB)], c+d=200- 10 =5 (0 B)Bs- By (AD
0 -1 2

Hei, Mg,/ \lo o o
4.2 All derivatives of the Hamiltoniar{ are evaluated 4iB;,
: lo(pgBi)]. As s, vanishes at the filling critical point, while
Because of the specific range of integration it is not easy td{gg does not vanish, we can neglegtin the above equa-
evaluate these integrals. Nevertheless, close to the fillintjons. Solving Eqs(Al) we obtain
critical point the leading, divergent term of the undulation

amplitude fluctuations can be estimated as By;-B; (1 ,
p a= 5 ?rr[_Al] (57—['0'0 -1 (pBBi)HB|0> )
2 kgT—— In(de{H"]) = —2 2, . (4.3
B)) ~ kgT—— In(defH"]) = ———— . (4.
(3B)%) ~ kT — dere7] oo -
B;-B

Thus, very close t@c the fluctuation((sB)?) is greater than b= 2 ?I'r[Al] (Heg+1"(pPgBi)Hay)- (A2)
(B3—B,)? (defH"] vanishes affcr) and the mean-field ap-
proximation breaks down. Explicit calculations show
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Hei(Bilo(pgB)) = =1"(psB) Hy 1 (Bi. lo(PeBy)) . (A3) a~t? y~t"% b~t, a+b~t"?  (A5)
With the help of this relation we finally obtain
B.-B. 1 and finally
a= 1 (_H|2| +Hé|>,
2H|0'0Tr['A] 2 00 0
_ yna+b)>~t3%  (ya+ gb)? ~t2. (A6)
B;-B
b= ﬁr[;ﬂ def A]. (A4)
tolo Analoguously we can obtain the asymptotic behaviorcof
Asymptotically, close to the filling critical point andd.
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